Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Properties of In2O3 films obtained by thermal oxidation of sprayed In2S3

Identifieur interne : 000649 ( Main/Repository ); précédent : 000648; suivant : 000650

Properties of In2O3 films obtained by thermal oxidation of sprayed In2S3

Auteurs : RBID : Pascal:13-0363151

Descripteurs français

English descriptors

Abstract

In2S3 thin films were grown by the chemical spray pyrolysis (CSP) method using indium chloride and thiourea as precursors at a molar ratio of S:In=2.5. The deposition was carried out at 350 °C on quartz substrates. The film thickness is about 1 μm. The films were then annealed for 2 h at 550, 600, 650 and 700 C in oxygen flow. This process allows the transformation of nanocrystal In2O3 from In2S3 and the reaction is complete at 600 °C. X-ray diffraction spectra show that In2O3 films are polycrystalline with a cubic phase and preferentially oriented towards (222). The film grain size increases from 19 to 25 nm and RMS values increase from 9 to 30 nm. In2O3 films exhibit transparency over 70-85% in the visible and infrared regions due to the thickness and crystalline properties of the films. The optical band gap is found to vary in the range 3.87-3.95 eV for direct transitions. Hall effect measurements at room temperature show that resistivity is decreased from 117 to 27 Ω cm. A carrier concentration of 1 x 1016 cm-3 and mobility of about 117 cm2 V-1 s-1 are obtained at 700 °C.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0363151

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Properties of In
<sub>2</sub>
O
<sub>3</sub>
films obtained by thermal oxidation of sprayed In
<sub>2</sub>
S
<sub>3</sub>
</title>
<author>
<name sortKey="Kraini, M" uniqKey="Kraini M">M. Kraini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement, Faculté des Sciences de Gabès</s1>
<s2>Cité Erriadh Manara Zrig 6072 Gabès</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Cité Erriadh Manara Zrig 6072 Gabès</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bouguila, N" uniqKey="Bouguila N">N. Bouguila</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement, Faculté des Sciences de Gabès</s1>
<s2>Cité Erriadh Manara Zrig 6072 Gabès</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Cité Erriadh Manara Zrig 6072 Gabès</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Halidou, I" uniqKey="Halidou I">I. Halidou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Unité de Recherches sur les Hétéro-Epitaxies et Applications (URHEA), Faculté des Sciences</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5000 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Timoumi, A" uniqKey="Timoumi A">A. Timoumi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Photovoltaïque et Matériaux Semiconducteurs, Département de Génie Industriel, Ecole Nationale d'Ingénieurs de Tunis, PB 37</s1>
<s2>Le Belvédère 1002</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Le Belvédère 1002</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alaya, S" uniqKey="Alaya S">S. Alaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement, Faculté des Sciences de Gabès</s1>
<s2>Cité Erriadh Manara Zrig 6072 Gabès</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Cité Erriadh Manara Zrig 6072 Gabès</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0363151</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0363151 INIST</idno>
<idno type="RBID">Pascal:13-0363151</idno>
<idno type="wicri:Area/Main/Corpus">000425</idno>
<idno type="wicri:Area/Main/Repository">000649</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1369-8001</idno>
<title level="j" type="abbreviated">Mater. sci. semicond. process.</title>
<title level="j" type="main">Materials science in semiconductor processing</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Atomic force microscopy</term>
<term>Charge carrier density</term>
<term>Chip scale packaging</term>
<term>Crystalline material</term>
<term>Cubic crystals</term>
<term>Cubic lattices</term>
<term>Electrical conductivity</term>
<term>Energy gap</term>
<term>Grain size</term>
<term>Grain size analysis</term>
<term>Hall effect</term>
<term>Indium</term>
<term>Indium oxide</term>
<term>Indium sulfide</term>
<term>Integrated circuit bonding</term>
<term>Nanocrystal</term>
<term>Oxidation</term>
<term>Oxygen</term>
<term>Polycrystal</term>
<term>Room temperature</term>
<term>Root mean square value</term>
<term>Scanning electron microscopy</term>
<term>Silicon oxides</term>
<term>Spray coating</term>
<term>Spray pyrolysis</term>
<term>Thickness</term>
<term>Thin film</term>
<term>Thiourea</term>
<term>Transparency</term>
<term>Transparent material</term>
<term>X ray diffraction</term>
<term>X ray spectrum</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Oxydation</term>
<term>Dépôt projection</term>
<term>Technologie CSP</term>
<term>Thiourée</term>
<term>Epaisseur</term>
<term>Recuit</term>
<term>Diffraction RX</term>
<term>Spectre RX</term>
<term>Polycristal</term>
<term>Cristal cubique</term>
<term>Grosseur grain</term>
<term>Granulométrie</term>
<term>Valeur efficace</term>
<term>Transparence</term>
<term>Bande interdite</term>
<term>Effet Hall</term>
<term>Température ambiante</term>
<term>Conductivité électrique</term>
<term>Densité porteur charge</term>
<term>Microscopie force atomique</term>
<term>Microscopie électronique balayage</term>
<term>Oxyde d'indium</term>
<term>Sulfure d'indium</term>
<term>Couche mince</term>
<term>Indium</term>
<term>Oxyde de silicium</term>
<term>Oxygène</term>
<term>Nanocristal</term>
<term>Réseau cubique</term>
<term>Matériau transparent</term>
<term>Matériau cristallin</term>
<term>Assemblage circuit intégré</term>
<term>6146</term>
<term>7363</term>
<term>6837P</term>
<term>0779</term>
<term>In2O3</term>
<term>In2S3</term>
<term>SiO2</term>
<term>Pyrolyse par projection</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<sub>2</sub>
S
<sub>3</sub>
thin films were grown by the chemical spray pyrolysis (CSP) method using indium chloride and thiourea as precursors at a molar ratio of S:In=2.5. The deposition was carried out at 350 °C on quartz substrates. The film thickness is about 1 μm. The films were then annealed for 2 h at 550, 600, 650 and 700 C in oxygen flow. This process allows the transformation of nanocrystal In
<sub>2</sub>
O
<sub>3</sub>
from In
<sub>2</sub>
S
<sub>3</sub>
and the reaction is complete at 600 °C. X-ray diffraction spectra show that In
<sub>2</sub>
O
<sub>3</sub>
films are polycrystalline with a cubic phase and preferentially oriented towards (222). The film grain size increases from 19 to 25 nm and RMS values increase from 9 to 30 nm. In
<sub>2</sub>
O
<sub>3</sub>
films exhibit transparency over 70-85% in the visible and infrared regions due to the thickness and crystalline properties of the films. The optical band gap is found to vary in the range 3.87-3.95 eV for direct transitions. Hall effect measurements at room temperature show that resistivity is decreased from 117 to 27 Ω cm. A carrier concentration of 1 x 10
<sup>16 </sup>
cm
<sup>-3</sup>
and mobility of about 117 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
are obtained at 700 °C.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1369-8001</s0>
</fA01>
<fA03 i2="1">
<s0>Mater. sci. semicond. process.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Properties of In
<sub>2</sub>
O
<sub>3</sub>
films obtained by thermal oxidation of sprayed In
<sub>2</sub>
S
<sub>3</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KRAINI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOUGUILA (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HALIDOU (I.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TIMOUMI (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ALAYA (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l'Environnement, Faculté des Sciences de Gabès</s1>
<s2>Cité Erriadh Manara Zrig 6072 Gabès</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Unité de Recherches sur les Hétéro-Epitaxies et Applications (URHEA), Faculté des Sciences</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Photovoltaïque et Matériaux Semiconducteurs, Département de Génie Industriel, Ecole Nationale d'Ingénieurs de Tunis, PB 37</s1>
<s2>Le Belvédère 1002</s2>
<s3>TUN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1388-1396</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888A</s2>
<s5>354000501052880050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0363151</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Materials science in semiconductor processing</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In
<sub>2</sub>
S
<sub>3</sub>
thin films were grown by the chemical spray pyrolysis (CSP) method using indium chloride and thiourea as precursors at a molar ratio of S:In=2.5. The deposition was carried out at 350 °C on quartz substrates. The film thickness is about 1 μm. The films were then annealed for 2 h at 550, 600, 650 and 700 C in oxygen flow. This process allows the transformation of nanocrystal In
<sub>2</sub>
O
<sub>3</sub>
from In
<sub>2</sub>
S
<sub>3</sub>
and the reaction is complete at 600 °C. X-ray diffraction spectra show that In
<sub>2</sub>
O
<sub>3</sub>
films are polycrystalline with a cubic phase and preferentially oriented towards (222). The film grain size increases from 19 to 25 nm and RMS values increase from 9 to 30 nm. In
<sub>2</sub>
O
<sub>3</sub>
films exhibit transparency over 70-85% in the visible and infrared regions due to the thickness and crystalline properties of the films. The optical band gap is found to vary in the range 3.87-3.95 eV for direct transitions. Hall effect measurements at room temperature show that resistivity is decreased from 117 to 27 Ω cm. A carrier concentration of 1 x 10
<sup>16 </sup>
cm
<sup>-3</sup>
and mobility of about 117 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
are obtained at 700 °C.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11E01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D11C06</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15R</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D11C02A</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Oxydation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Oxidation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Oxidation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Oxidación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dépôt projection</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Spray coating</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Spritzbeschichten</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Depósito proyección</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Technologie CSP</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Chip scale packaging</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Thiourée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thiourea</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Tiourea</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Dicke</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="GER">
<s0>Gluehen</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Roentgenbeugung</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectre RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>X ray spectrum</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectro RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Polykristall</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cristal cubique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Cubic crystals</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Kubische Struktur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cristal cúbico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Grosseur grain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Grain size</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Korngroesse</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Grosor grano</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Granulométrie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Grain size analysis</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="GER">
<s0>Teilchengroessenbestimmung</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Granulometría</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Valeur efficace</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Root mean square value</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Valor eficaz</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Transparence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Transparency</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Transparencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="GER">
<s0>Energieluecke</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Effet Hall</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Hall effect</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="GER">
<s0>Hall Effekt</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Efecto Hall</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="GER">
<s0>Raumtemperatur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="GER">
<s0>Elektrische Leitfaehigkeit</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Densité porteur charge</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Charge carrier density</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Concentración portador carga</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="GER">
<s0>Rasterelektronenmikroskopie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="GER">
<s0>Indiumoxid</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="GER">
<s0>Indiumsulfid</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="GER">
<s0>Duennschicht</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="GER">
<s0>Indium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="GER">
<s0>Sauerstoff</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>Assemblage circuit intégré</s0>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="3" l="ENG">
<s0>Integrated circuit bonding</s0>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>6837P</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>0779</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>In2S3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>Pyrolyse par projection</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="40" i2="X" l="ENG">
<s0>Spray pyrolysis</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>343</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000649 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000649 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0363151
   |texte=   Properties of In2O3 films obtained by thermal oxidation of sprayed In2S3
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024